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Abstract This paper studies the seismic response of soil basins emphasizing the
sensitivity of 2D dynamic response to geometric and material properties. This is
accomplished through a formal dimensional analysis accounting for fully inelastic
soil response thus augmenting the generalization potential of the results, and provid-
ing a novel framework for future research on the subject. It is shown that 2D valley
response may be described through the following key dimensionless parameters:
(1) the valley shape factor s, expressing the slope inclination; (2) the impedance ratio
i, which expresses the stiffness of the soil relative to the bedrock; (3) the wavelength
ratio λS, which is a function of soil stiffness and seismic excitation frequency; (4) the
rigidity ratio v, expressing the stiffness of the soil relative to its strength; and (5) the
resistance ratio r, which expresses the degree of soil nonlinearity. The effectiveness of
the dimensional formulation is verified through the numerical analysis of equivalent
valleys, assuming elastic and nonlinear soil response. Finally, a parametric study is
conducted to gain insight on the effects of the introduced dimensionless parameters on
the dynamic response of trapezoidal alleys. It is shown that decreasing the valley slope
or the wavelength ratio promotes wave reflections within the wedge, thus enhancing
the possibility of wave interferences and subsequently leading to 2D aggravation on
the valley surface. On the other hand, the geometry-dependent parasitic vertical accel-
eration increases as the valley slope becomes steeper. As the degree of soil nonlinear-
ity increases, 2D phenomena tend to become localized close to the valley edges.

Introduction

It is well known that local geologic conditions, particu-
larly as materialized within alluvial basins, may strongly
influence the nature and intensity of ground shaking. Hence,
conventional 1D modeling would generally fail to reproduce
the complex wave scattering phenomena introduced by the
nonlevel geometry of a sedimentary deposit. Such phenom-
ena include: (1) generation of surface waves at the lateral
boundaries, which tend to increase both the amplitude
and the duration of ground motion; (2) amplification and
resonance induced by low-velocity surface layers; and
(3) multiple refractions of incoming rays due to the 2D or
3D geometry of the alluvial basin, which are responsible
not only for aggravating the response but also for producing
a quite destructive parasitic vertical component (e.g., Gela-
goti et al., 2010).

Earthquake events over the last 40 years have offered an
extensive list of documented occurrences of wave scattering
effects on the modification of surface ground motion. Some
early examples include the response of the Caracas Valley
during the 1967 earthquake (Papageorgiou and Kim, 1991)
or the highly nonuniform damage distribution pattern in Kir-
ovakan after the Spitak earthquake in Armenia (Borcherdt

et al., 1989; Yegian et al., 1994). The role of surface waves
in the 1971 San Fernando earthquake that stroke the deep
California basin was initially revealed through measurements
(Hanks, 1975) and later confirmed by Vidale and Helmber-
ger (1988). Localized heterogeneities of surface soft clay
layers were also accountable for the completely diverse
motion recorded at two adjacent sites during the 1985
Michoacan earthquake (Bard et al., 1988; Chávez-García
and Bard, 1989). Local site conditions were proven to play
a quite prevailing role in the damage distribution pattern of
the devastating Northridge (1994) and Kobe (1995) earth-
quakes (Kawase, 1996; Pitarka et al., 1998; Scrivner and
Helmberger, 1999), while most recently, recordings from
the latest strong earthquakes (2010–2011) in Christchurch,
New Zealand, have clearly indicated strong ground-motion
amplification phenomena attributable to valley effects
(Cubrinovski and Green, 2010).

Motivated by the impact of such events, substantial
research effort has been devoted aiming to advance the
understanding on wave propagation characteristics in allu-
vial valleys. Pioneering work in this area commenced in
the early 1960s, mainly dealing with the study of elastic
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wave propagation in horizontally stratified media with irre-
gular interfaces (Herrera, 1964; Tsai 1969; Aki and Larner,
1970; Boore, 1970). Closed form rigorous analytical solu-
tions on 2D wave diffraction were obtained by Trifunac
(1971, 1973) and Wong and Trifunac (1974) for valleys
and canyons of rather simple geometries subjected to plane
SH waves. The realm of recently advanced powerful numer-
ical algorithms (such as boundary elements, finite differ-
ences, and finite and spectral elements) has further
enhanced the research potential on the subject, providing
the means to delineate the key factors controlling site
response during a seismic event (Sánchez-Sesma et al., 1993;
Fishman and Ahmad, 1995; Sánchez-Sesma and Luzon,
1995; Bard and Bouchon, 1980a, b; Harmsen and Harding,
1981; Hill et al., 1990; Pitarka and Irikura, 1996; Zhang and
Papageorgiou, 1996; Bielak and Ghattas, 1999; Olsen et al.,
2006; Archuleta et al., 2003; Hartzell et al., 2003). Besides
1D soil stratigraphy and basin geometry, it has been shown
that the strong ground motion may be dramatically affected
by the source characteristics (i.e., the type and angle of
incidence of incoming waves), the specific features of the
velocity structure (i.e., the geometry of lateral heterogene-
ities, the impedance contrast of subsequent layers, etc.),
and the degree of mobilized soil nonlinearity.

Apparently, the significant amount of uncertainties
associated with the dynamic response of alluvial valleys
will unavoidably produce results which are exceptionally
sensitive to the individual characteristics of the problem un-
der study. This paper initially utilizes a specific example to
underscore the sensitivity of valley response on soil stiffness.
This is pursued by a formal dimensional analysis accounting
for fully inelastic soil response. Such an approach enables the
production of dimensionless results, thus aiming to set a fra-
mework of conclusions of generalized (rather than case-
specific) applicability. To this end, this paper examines the
response of trapezoidal valleys of various symmetrical
shapes and certain material characteristics (all inspired by
well-known existing formations) excited by vertically propa-
gating plane SV waves.

Analysis Methodology

As shown in Figure 1a, an idealized trapezoidal alluvial
valley of width 2L and depth d is analyzed in 2D, assuming
plane strain conditions. The problem is analyzed in the time
domain employing the finite element (FE) method. The
valley models have been excited by Ricker-type pulse exci-
tations of varying characteristic frequencies fo. Two indica-
tive examples, a higher frequency Ricker-3 and a lower
frequency Ricker-1 pulse are presented in Figure 1b. Very
finely discretized quadrilateral continuum elements have
been used in soil modeling so as to ensure realistic represen-
tation of the propagating wavelengths. The element size has
been chosen so that at least 10 elements correspond to the
smallest expected wavelength (given that in nonlinear pro-
blems the wavelength is expected to reduce with the increas-

ing degree of plastification). Radiation damping is taken into
account by introducing appropriate absorbing boundaries at
the base of the numerical model. Free-field boundaries
responding as shear beams are placed at the two lateral
boundaries of the model to simulate the motion produced
by in-plane vertically incident SV waves.

The numerical analysis methodology employed herein
has been extensively validated against a recorded seismic
response in Gazetas et al. (1993) and Gelagoti et al. (2010).
Rayleigh damping is introduced to effectively reproduce
visco–elastic soil response, while nonlinear hysteretic soil
behavior is modeled by employing a kinematic hardening
constitutive model, incorporating the Von Mises failure
criterion and an associative plastic flow rule. The model has
been validated against centrifuge experiments and shown to
effectively capture the undrained cyclic soil response (Ana-
stasopoulos et al., 2011).

The evolution law of the model consists of two compo-
nents: a nonlinear kinematic hardening component, which
describes the translation of the yield surface in the stress space
(defined through the backstress parameterα), and an isotropic
hardening component, which defines the size of the yield
surface σo as a function of plastic deformation. Calculation
of the model parameters requires the knowledge of (a) soil
strength Su, (b) small-strain stiffness Go or Vso, and (c) stiff-
ness reduction G-γ and ξ-γ curves to calibrate parameter λ.
Figure 2a compares the calibrated numerical model prediction
in terms of G-γ and ξ-γ curves against the published data of
Ishibashi and Zhang (1993), while Figure 2b plots the numer-
ical shear strain versus shear stress loops produced when
subjecting a soil element to cyclic shear deformation of gra-
dually increasing amplitude. Themodel has been successfully
adopted in the analysis of the seismic behavior of an alluvial
basin by Gelagoti et al. (2010).

The Necessity for Dimensional Analysis

2D valley effects have been proven to be a function of a
number of parameters such as the shape and dimensions of
the valley, the soil properties, and the characteristics of the
seismic excitation. Consequently, a complete parametric
investigation would be a formidable task, and the study of
specific cases, despite offering valuable insights on the
governing mechanisms affecting the response, cannot lead
to results and conclusions of more general applicability. Such
shortcomings may be substantially overcome through dimen-
sional analysis.

To persuasively underscore the limited generality of
conclusions based on specific case studies, it is herein
attempted to demonstrate the sensitivity of valley response
to two key problem parameters: soil stiffness, expressed
through the shear wave velocity VS of the alluvium (assum-
ing elastic soil response); and soil nonlinearity (using the
aforementioned constitutive model). The specific numerical
example adopted refers to a relatively mild trapezoidal valley
of depth d � 24 m (Fig. 1), inspired by the geometry of the
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well-documented Ohba Valley in Japan (Tazoh et al., 1988,
Psarropoulos et al., 1999). The model is excited by two
pulses (Ricker, 1960) of different dominant frequency:
Ricker 1 of characteristic frequency fp � 1:4 Hz, corre-
sponding to a relatively long period seismic excitation; and
Ricker 3 of fp � 4:3 Hz, which is characterized by a much
higher frequency content. Ricker pulses are narrow banded
and are therefore considered appropriate for bringing the
governing trends to light.

Results are mainly presented in the form of spatial
distribution along the valley surface as follows:

• Aggravation factor AG � AH
2D=A

H
1D (defined as the ratio of

the peak value of horizontal acceleration, taking account of
2D effects, over the peak acceleration predicted by 1D
analysis of isolated soil columns), and

• Peak value of the parasitically generated vertical compo-
nent A�2D�

V , which is the outcome of the refraction of

inclined waves on the valley surface and has been shown
to be synchronous and of similar frequency content with
the horizontal component AH, thus being quite detrimental
to overlying structures (see Gelagoti et al., 2010). It is
needless to note that A�1D�

V � 0.

The Effect of Soil Stiffness

The elastic 2D responses of three homogeneous valleys
(of the same geometry) are compared, with the shear wave
velocity VS of the soil being the only changing parameter, so
as to model (1) a very soft formation of VS1 � 100 m=s, (2) a
moderately soft one of VS2 � 150 m=s, and (3) a relatively
stiff valley of VS3 � 200 m=s. The shear-wave velocity of
the substratum is kept constant and equal to VR � 400 m=s.
Thus, the impedance contrast ratio (ρRVR=ρSVS) between
the soil (ρS � 1:6 Mg=m3) and the underlying rock stratum
(ρR � 2:0 Mg=m3) ranges from 2.5 to 5.

Figure 1. (a) Finite element mesh and key problem parameters. An idealized alluvial valley of width 2L and depth d is analyzed in 2D
assuming plane strain conditions. Note the very fine discretization inside the valley (minimum element width of less than 1 m). (b) Time
histories and the respective response and Fourier spectra of the Ricker wavelets of frequency fE utilized as seismic excitation for the dynamic
time-history analyses of the valley.
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For the long-period Ricker-1 seismic excitation (scaled at
PGA � 1 g), the differences between the two extreme cases
(very soft valley, VS1 � 100 m=s; slightly stiff valley,
VS3 � 200 m=s) can be visualized in Figure 3 in terms of wa-
vefield patterns produced through seismogram synthetics—
an illustrative diagnostic tool that may be used to portray
the evolution of generated waveforms as they appear on
the valley surface. Seismogram synthetics are produced by
collocating the ground motion time histories at each point
along the valley surface. To this end, the vertical axis of
the diagram represents the distance along the valley surface,
while the acceleration time histories are plotted along the
horizontal axis. In the case of the slightly stiff valley (Fig. 3a),
the response is essentially 1D; the imposed shaking reaches
almost simultaneously all the points along the valley surface.
The signal shows amplitude amplification over the base
excitation but a rather negligible increase in duration. Surface
waves at C � 360 m=s are barely visible on the seismogram
synthetics; these waves do not seem to affect the amplitude of
motion of the central portion of the basin. In stark contrast,
when the softer valley is examined (Fig. 3b), the initial arrivals
of SVwaves are followed by some later arrivals, which should
be attributed to Rayleigh waves generated at the valley edges
and propagating along its surface. This is reflected on the time
histories ofAH recorded at x � 160 m: the produced signal on
the surface of the VS � 100 m=s soil has a substantially high-

er duration than the imposed seismic excitation, and the initial
strong motion pulse is followed by several weaker (lower
amplitude) pulses. The apparent propagation velocity of the
late arriving waves is graphically calculated to be equal to
C≈ 220 m=s, a value which is substantially higher than the
wavevelocity of 100 m=s, thus confirming that the subsequent
pulses have originated from surface waves. Indeed, the value
of C � 220 m=s for the Ricker-1 pulse with fp � 1:4 Hz,
valley depth d � 24 m, and VS � 100 m=s gives 2π=kd �
C=fod � 6:5 and C=VS � 2:2, which are in agreement with
the theoretical dispersion curve of Kanai (1951)plotted in
Figure 3c for a two-layered half-space with density ratio
ρ2=ρ1 � 1 and G2=G1 � 20, corresponding to VS2=VS1 �
4:4, which is approximately our case. Similarly, for the
slightly stiff valley, the Rayleigh-wave dispersion curve for
a two-layered half-space having ρ2=ρ1 � 1, G2=G1 � 5

(approximately our case) gives a velocity value of CR �
360 m=s for 2π=kd � 10.

Such phenomena are also reflected in the spatial distri-
butions of AH, AV , and AG along the valley surface (Fig. 4).
As revealed by the distribution of peak horizontal accelera-
tion AH (Fig. 4a), when the VS3 � 200 m=s valley is excited
by the relatively low frequency Ricker-1 pulse, its response is
practically 1D. A higher-amplitude response is observed in
the central area of the valley, while a smooth transition is
observed toward the valley edges, owing to the impedance

(a)

(b)

Figure 2. Calibration of the soil numerical model. (a) A comparison of the numerically predicted G=Go ratio versus shear strain γ and
damping ratio ξ versus shear-strain γ curves with published data. (b) An example τ -γ loop produced when a soil element of Su � 50 kPa is
subjected to cyclic shear deformation of gradually increasing amplitude.
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contrast between the soil and the outcropping bedrock.
Recall that in the case of the stiff valley the generated
wavelengths (defined as the ratio λ � VS=f, where f is
the dominant frequency of the seismic excitation) are rela-
tively long (ranging from λ≈ 50 m to λ≈ 200 m). Hence,
it is apparent that the valley geometry, with the largest con-

vex dimension being only 24 m, is inadequate to create any
notable wave refractions and generates surface waves leading
to AG≈ 1 along the whole length of the valley (Fig. 4b). As
the valley stiffness reduces to VS2 � 150 m=s and VS1 �
100 m=s, the generated wavelengths decrease and the geome-
try of the valley becomes more perceptible to the incoming

Figure 3. Seismogram synthetics illustrating the effect of shear-wave velocity VS on the produced wave-field patterns for (a) a stiff valley
of VS � 200 m=s and (b) a much softer valley of VS � 100 m=s. Both valleys are excited by a low frequency Ricker-1 pulse (fo � 1:4 Hz),
assuming elastic soil response. (c) Validation of the numerically calculated Rayleigh-wave phase velocities in comparison with theoretical
dispersion curves of Kanai (1951).
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waves. Consequently, 2D valley effects are noticeably
enhanced (Fig. 4b). It is noteworthy that for the softer valley
(VS1 � 100 m=s), which generates the larger aggravation AG
(i.e., the surface ground motion is amplified by roughly 40%
compared to what the 1D theory would predict), valley
effects are prominent along many parts on the valley surface.
As is clearly manifested in the wave-field pattern of Figure 3,
the latter is contaminated by high-amplitude Rayleigh waves.
The steep peaks of AG, which mainly appear at the center of
the valley and at locations around x≈�150 m, may be at-
tributed to the constructive interference of antithetically pro-
pagating Rayleigh waves, or to the interference of Rayleigh
waves with vertically propagating SV waves. At intermediate
locations x≈�50 m, Rayleigh waves interfere destructively
and only the SV (1D) waves produce the motion.

The described phenomena are even more conspicuous in
terms of distribution of the parasitic vertical acceleration AV

along the valley surface (Fig. 4c). Since this component is the
result of 2D valley geometry, it can practically appear only

when the wavelength is adequately small and therefore able
to perceive the topographic relief. Thus, when the valley for-
mation is stiff, the lack of refractions results in negligible
parasitic vertical acceleration (not exceeding 10% of the am-
plitude of the purely horizontal seismic excitation). On the
other hand, as the soil profile softens, the vertical component
is drastically amplified, reaching almost 70% of the horizon-
tal seismic excitation at certain locations.

The aggravation pattern changes radically when the
three valleys are excited by the high frequency Ricker-3
wavelet, which generates smaller wavelengths capable of
perceiving the topographic relief in greater detail (Fig. 5).
Yet, the central part of the valley is (in all three cases) com-
pletely oblivious to the quite complex wave-field pattern, and
the response in this region does not substantially deviate
from the 1D response: AG≈ 1:2D aggravation phenomena
are only evident near the valley edges, and tend to amplify
with the decrease of shear wave velocity. The maximum AG
reaches 1.4 for the softer case of VS1 � 100 m=s within a
quite narrow band near the valley edges, followed by a

Figure 4. The effect of soil stiffness on the viscoelastic re-
sponse of the valley subjected to a low-frequency Ricker-1 wavelet.
The spatial distribution of (a) horizontal peak ground acceleration
AH, (b) aggravation factor AG, and (c) parasitically generated (due
to the 2D geometry) vertical acceleration AV .

Figure 5. The effect of soil stiffness on the viscoelastic re-
sponse of the valley subjected to a low-frequency Ricker-3 wavelet.
The spatial distribution of (a) horizontal peak ground acceleration
AH , (b) aggravation factor AG, and (c) parasitically generated (due
to the 2D geometry) vertical acceleration AV .
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shadow zone where AG falls below 1.0, a deamplification
compared to the 1D motion. As the valley soil stiffens
(VS2 � 150 m=s), AG drops to roughly 1.2, while the sha-
dow zone precedes the zone of the peak (i.e., it is now closer
to the valley edges, covering much of the surface directly
above the valley wedges). Further increase of the shear-wave
velocity to VS3 � 200 m=s results in a further decrease of the
intensity of produced valley effects (AG≈ 1:1, while the
shadow zone remains unchanged, extending along much
of the surface above the wedges).

Contrary to the horizontal component, the parasitically
generated vertical component AV reaches surprisingly high
values even for the stiffer soil profiles (Fig. 5b). Although
the horizontal acceleration is slightly deamplified inside the
valley wedges, the vertical component even exceeds 8 m=s2

(i.e., 80% of the bedrock input motion) in the same areas.
The amplitude of the vertical motion is further augmented
(becoming as high as 13:5 m=s2) when the profile becomes
softer, but now the high acceleration values are only detect-
able over a very small length (≈15 m) close to the valley
edges. It is noteworthy that the location of the peak valley-
generated vertical component gradually shifts toward the
valley edges as the shear wave velocity decreases. This shift
is again attributed to the geometry of the valley relative to the
wavelength of the seismic excitation. As the wavelength
decreases (i.e., as VS decreases), the geometry becomes
increasingly more perceptible by the incoming waves, and
wave refractions toward the convex borders of the valley
wedges are intensified. The entrapment of multiply refracting
waves within the valley wedges naturally amplifies the ver-
tical component in those areas, shifting the location of the
peak toward the valley edges.

The Effect of Soil Nonlinearity

The effect of soil nonlinearity on 2D valley effects has
been extensively examined in the literature with various
methods ranging from equivalent linear to fully inelastic
analysis (Marsh et al., 1995; Zhang and Papageorgiou,
1996; Pavlenko, 2001; Pergalani et al., 2003; Olsen et al.,
2006; Lenti et al., 2009; Gelagoti et al., 2010). Most studies
conclude that soil inelasticity reduces 2D valley amplifica-
tion, and hence AG tends to diminish.

Such a case study is presented in Figure 6, referring to
the soft valley formation (VS � 100 m=s and Su � 50 kPa)
excited by a high frequency Ricker-3 pulse of PGA �
10 m=s2. Indeed, soil nonlinearity results in a decrease of
2D soil amplification with AG dropping from 1.4 (for elastic
soil response) to 1.2 near valley edges, while the shadow area
(AG < 1) becomes wider and deeper (Fig. 6a). Similarly
beneficial is the role of soil inelasticity in terms of the para-
sitically generated vertical component AV (Fig. 6b), which
decreases from roughly 14 m=s2 to 8 m=s2 while its distribu-
tion along the valley surface is only constrained at the
wedges.

Yet, soil nonlinearity is not always beneficial. In fact, in
some cases it may even become detrimental. Figure 7 depicts
one such example, referring to the stiff valley (VS �
200 m=s, Su � 150 kPa) excited by a relatively low fre-
quency pulse (Ricker 1). AG now increases with soil nonli-
nearity to nearly 1.20 (Fig. 7a). Due to soil plastification, the
shear stiffness of the alluvium decreases from Go (small
strain, elastic) to a substantially lower secant value G,
corresponding to a lower effective shear-wave velocity �VS.
This decrease produces lower wavelengths and, subse-
quently, enhances 2D valley effects, compared with the elas-
tic case, where the wavelengths were too long to perceive the
geometric irregularity of the bedrock. This mechanism is
further elucidated in the spatial distribution of the vertical
(parasitic) acceleration AV (Fig. 7b). The latter is systemati-
cally larger in the nonlinear case along the whole valley
length, while its maximum value (AV;max � 5 m=s2) close
to valley edges is much higher than in the elastic analysis.

The aforementioned role of soil nonlinearity may be
crisply visualized through the produced wave-field patterns.
Figure 8 compares the generated waveforms for the two
previously discussed extreme cases: (a) a soft valley of VS �
100 m=s and Su � 50 kPa, excited by a high-frequency
Ricker-3 pulse, where soil nonlinearity is beneficial (i.e.,
soil nonlinearity wipes out 2D effects, thus reducing AG);
and (b) a rather stiff valley of VS � 200 m=s and

Figure 6. Illustrative example of the beneficial role of soil non-
linearity: a comparison of elastic with nonlinear analysis for a re-
latively soft valley of VS � 100 m=s and Su � 50 kPa excited by a
high-frequency Ricker-3 pulse. The spatial distribution along the
valley surface of (a) aggravation factor AG and (b) parasitically gen-
erated vertical acceleration AV .
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Su � 150 kPa subjected to a low-frequency Ricker-1 pulse,
where soil nonlinearity is detrimental (i.e., 2D effects are am-
plified and increasing AG). In the former case (Fig. 8a), the
complex wave field of the elastic case (top seismogram)
vanishes to a much smoother pattern (bottom seismogram).
Evidently, the multiple waveforms and modes of surface
waves tend to be damped out as they propagate along the
surface. Limited 2D phenomena are only localized close to
the valley edges, as indicated by the slight crumpling of the
seismogram in that area.

In the latter case (Fig. 8b), the wave field of the elastic
case (top seismogram) is quite smooth, revealing an essen-
tially 1D response, as the long-wavelength waves do not dis-
tinguish the valley geometry. Ripples of Rayleigh waves are
barely distinguishable, and apparently they hardly affect the
motion in most of the valley. This picture changes when we
account for soil nonlinearity (bottom diagram). As already
discussed, soil plastification reduces the effective shear mod-
ulus of the soil and thereby the produced wavelengths, hence
the waves become more sensitive to the lateral heterogeneity
of the bedrock, which is now more easily perceptible (white
dashed line in the figure). The generation of Rayleigh waves
may also be noticed. However, being highly damped due to
inelastic soil response, they are unable to produce significant
amplification.

Figure 7. Illustrative example of the detrimental role of soil
nonlinearity: a comparison of elastic with nonlinear analysis for
a stiff valley of VS � 200 m=s and Su � 150 kPa excited by a re-
latively low-frequency Ricker-1 pulse. The spatial distribution
along the ground surface of (a) aggravation factor AG and (b) para-
sitically generated vertical acceleration AV .

Figure 8. Illustration of the role of soil nonlinearity in terms of horizontal acceleration wave fields. A comparison of elastic (top row)
with nonlinear analysis (bottom row) for (a) a soft valley of VS � 100 m=s excited by a high-frequency Ricker-3 pulse, where soil
nonlinearity is beneficial, and (b) a rather stiff valley of VS � 200 m=s subjected to a low-frequency Ricker-1 pulse, where soil nonlinearity
is detrimental.
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Dimensional Analysis

The preceding analysis has highlighted the sensitivity of
2D valley response to a variety of key problem parameters,
elucidating the need for dimensional analysis. In this section
we attempt to perform a formal dimensional analysis
(Langhaar, 1951) of the dynamic response of 2D valley
formations.

Generation of Nondimensional Terms

Dimensional analysis may be thought of as a mathema-
tical process that outlines the major mathematical expres-
sions describing natural phenomena. According to Makris
and Black (2004), the application of dimensional analysis
to any particular physical phenomenon is based on the pre-
mise that the phenomenon can be described by a dimension-
ally homogeneous equation that relates the dependent
variables u1 and the independent variables u2;…; uk as

u1 � f�u2; u3;…:uk�: (6)

In this context, for the case of an homogeneous alluvial
valley, and taking account of soil nonlinearity, it is expected
that the ground accelerations at the valley surface, AH and
AV , and the associated aggravation factor AG, will be a func-
tion of the following:

• Valley geometry, expressed through its half-length L and
depth d (see Fig. 1),

• Elastic properties of the soil, expressed through its density
ρS and shear wave velocity VS, and of the underlying bed-
rock, expressed through ρR and VR,

• Prefailure nonlinear soil properties G-γ and ξ-γ,
• Soil strength, expressed through the undrained shear
strength Su, and

• Seismic excitation characteristics, expressed through the
pulse amplitude ap and dominant frequency fp, or domi-
nant period Tp.

For the sake of simplicity, the formulation presented in
the ensuing discussion refers to homogeneous alluvial clayey
deposits of uniform Su, constant angle θ � 16:7°, and elastic
bedrock response. Source effects influencing the inclination
and type of incoming waves are not taken into account; ex-
citation is only vertically propagating SVwaves. The analysis
presented is conducted on the basis of Ricker pulses, which
may be described by a single characteristic frequency.

Based on the previous formulation, the response at the
valley surface (i.e., AH and AV ; AG) will be a function of

AG;AH; AV � f�d; L; VS; VR; ρs; ρR; Su; ap; Tp; θ�: (7)

Apparently, this equation contains k � 11 independent
variables that, given its homogeneous dimensionality, may

be reduced to a smaller number of dimensionless terms
defined as Π-terms (Barenblatt, 1996). Indeed, following
the Vaschy–Buckingham Π-theorem, a dimensionally homo-
geneous equation involving kvariables may be transformed
to a function of k-r dimensionless Π-products, where r is the
minimum number of reference dimensions necessary for the
description of the physical variables. In the specific problem,
the 10 physical variables can be described by three reference
dimensions: mass (M), time (T), and length (L). Therefore
the dimensionless form of equation 6 will include 11 � 3 �
8Π terms.

Consequently, and obeying the aforementioned princi-
ples, equation 7 may be rearranged as follows:

AG; AH=ap; AV=ap � f�i;λS; λR; v; ρ; s; θ�; (8)

where θ is the angle of the inclined boundary of the valley,
and

i � ρRVR=ρSVS (9)

is defined as the impedance ratio between the soil and the
surrounding rock. Accordingly, the normalized wavelengths
λS and λR within the valley soil and the bedrock, respec-
tively, are defined as

λS � VS=fpd; (10)

and

λR � VR=fpd: (11)

Physically, the dimensionless wavelength λ can be seen
as an index of the ability of the generated waves to capture
the valley geometry. Hence, small λ values are indicative of
small wavelengths, relative to the valley dimensions, which
in turn results in a more perceptible valley geometry and
therefore increased number of wave reflections. The term
λS may equivalently be regarded as one fourth of the ratio
of the dominant period of the excitation pulse over the soil
natural period.

Soil nonlinearity is expressed through a dimensionless
term r, named hereafter shear resistance ratio, which is
defined as

r � Su=ρsdαp; (12)

in which Su is the available shear strength and ρsdαp is an
index of the earthquake-induced stress at depth d. In other
words, r may be considered as an index of the mobilization
of soil shear strength.

The valley shape is defined with the ratio s of the valley
length over its depth,

s � L=d; (13)
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and the tangent of the angle of the wedge tan θ. (Note that if
the valley was sufficiently wide, the wedge angle θ alone
would be enough to describe the valley geometry).

Finally, the factor

v � ρV2
S=Su; (14)

termed rigidity ratio in soil mechanics literature, is the ratio
of the soil shear modulus (at small strains) over the undrained
shear strength.

The ultimate scope of dimensional analysis will be the
production of self-similar results (i.e., results obeying a
special type of symmetry, which is invariant with respect
to scale or size transformations [Makris and Black, 2004]).
In the sequel, the self-similarity in the response of a number
of example valleys is investigated to verify the formulation
presented herein. According to the previously stated dimen-
sional analysis, despite the different characteristics of the
analyzed valleys, their response should be self-similar,
provided that the equality of nondimensional terms is main-
tained. The valley geometries and the excitation time his-
tories utilized to confirm the aforementioned allegation are
summarized in Tables 1 and 2, considering elastic and non-
linear soil response, respectively.

Numerical Verification

The effectiveness of the dimensional formulation is first
shown for elastic soil response, a case which involves a
smaller number of dimensionless terms and is thus simpler
for use as an elucidating example. For this purpose, the three
equivalent valleys of Table 1 are analyzed. In the elastic
problem, dimensionless results can be obtained if the shape
indices s and tan θ and the wavelength ratios λS and λR are
kept constant. This implies that the ratio of the dominant
excitation period Tp over the dominant shear period Ts of

the soil profile should be held constant, which enables cap-
turing both the effect of wave propagation and 1D soil am-
plification. Figure 9 compares the response of the three
equivalent valleys of Table 1 with dimensionless parameters
(i � 0:27, λS � 5:83, λR � 16:67, s � 10:83, and tan θ �
16:7°) in terms of the spatial distribution of dimensionless
maximum horizontal AH=ap and vertical AV=ap acceleration
along the valley surface (Fig. 9a) and dimensionless horizon-
tal and vertical acceleration time histories at location
x=l1 � �0:7. The self-similarity of the produced curves is
evident in all plots.

A similar comparison is performed in Figure 10 for the
fully nonlinear problem through analysis of the two equiva-
lent valleys of Table 2 with dimensionless parameters
i � 5:15, λR � 23:58, λS � 5:83, r � 0:098, s � 10:83,
and v � 415. The effectiveness of the dimensional formula-
tion is thus also confirmed for this fully nonlinear problem.

Parametric Analysis

Having verified the effectiveness of the dimensional for-
mulation, a parametric study is conducted to gain insight into
the effect of the previously introduced dimensionless param-
eters on the dynamic response of trapezoidal valleys. Both
elastic and nonlinear soil response are considered.

The Effect of Shape Factor

Elastic Soil Response. Three valley geometries are exam-
ined (Fig. 11). The central part of the formation, denoted as
quasi 1D formation, is exactly the same in all three cases.
Consequently, the depth of all valleys is kept constant

Table 1
Properties of the Three Example Valleys Used to
Illustrate the Effectiveness of the Dimensional

Formulation When Assuming Elastic Soil Response

Variables Valley A Valley B Valley C

Physical Variables
L (m) 260 360 520
D (m) 24 36 48
tan θ 0.3 0.3 0.3
ρS (tn=m3) 1.8 1.8 1.8
ρR (tn=m3) 2.3 2.3 2.3
VS (m=s) 140 180 168
VR (m=s) 400 514 480
fp (Hz) 1.0 0.86 0.6

Nondimensional Variables
i � ρRVR=ρSVS 3.70 3.70 3.70
λR � VR=fpd 16.67 16.67 16.67
λS � VS=fpd 5.83 5.83 5.83
s � L=d 10.83 10.83 10.83
tan θ 0.3 0.3 0.3

Table 2
Properties of the Two Example Valleys Used to
Illustrate the Effectiveness of the Dimensional
Formulation When Accounting for Nonlinear

Soil Behavior

Variables Valley D Valley E

Physical Variables
L (m) 260 520
d (m) 24 48
tan θ 0.3 0.3
ρS (tn=m3) 1.8 1.8
ρR (tn=m3) 2.3 2.3
VS (m=s) 99 140
VR (m=s) 400 566
Su (kPa) 42.5 85
fp (Hz) 0.707 0.5
ap (m=s2) 10 10

Nondimensional Variables
i � ρRVR=ρSVS 5.15 5.15
λR � VR=fpd 23.58 23.58
λS � VS=fpd 5.83 5.83
r � Su=ρSdαp 0.1 0.1
s � L=d 10.83 10.83
tan θ 0.3 0.3
v � ρSV2

S=Su 415 415
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Figure 9. Numerical verification of the dimensional analysis formulation for elastic soil conditions. A comparison of the response of the
three equivalent valleys (see Table 1) in terms of (a) spatial distribution of dimensionless maximum horizontal AH=ap (top row) and vertical
AV=ap acceleration (bottom row) along the valley surface, and (b) dimensionless horizontal (top) and vertical acceleration (bottom) time
histories at location x=l1 � 0:7.

Figure 10. Numerical verification of the dimensional analysis formulation for nonlinear soil conditions. A comparison of the response of
two equivalent valleys (see Table 2) in terms of (a) spatial distribution of dimensionless maximum horizontal AH=ap (top) and vertical AV=ap
acceleration (bottom) along the valley surface, and (b) dimensionless horizontal (top) and vertical acceleration (bottom) time histories at
location x=l1 � �1:36.
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(d � 24 m). The inclination θ of the wedge boundary, and
hence the length of the wedges, is varied parametrically.
The geometry of valley 1 (shown in the middle) is inspired
by the Ohba Valley in Japan (Tazoh et al., 1988). The incli-
nation of its slopping boundary is considered typical for a
number of actual alluvial deposits such as the Ubaye Valley
in the French Alps (Jongmans and Campillo, 1993), the

Coachella Valley in California (Bodin et al, 1994; Rymer,
2000), and the Caracas Valley in Venezuella (Papageorgiou
and Kim, 1991). Valleys 2 (top) and 3 (bottom) represent a
significantly steeper and a milder formation, respectively.
The Rhone Valley and the San Jose, California, basin
(Frischknecht et al., 2005; Hartzell et al., 2003) are well-
known steep basins similar to the geometry of valley 2.
valley 3 may be crudely considered as representative of the
Volvi basin in northern Greece (Jongmans et al., 1998), the
Marina District basin in California (Hanks and Brady, 1991;
Zhang and Papageorgiou, 1996), the Parkway Valley in New
Zealand (Chávez-García et al., 1999), the Ashihara Valley in
Japan (Kudo et al., 1988; Kawase and Sato, 1992), and the
Salt Lake Valley (Benz and Smith, 1998).

As stated previously, when the valley is excited by small
wavelengths (λS ≈ 1), 2D phenomena are mainly a product
of wave reflections in the inclined edges. As is schematically
illustrated in Figure 12a for the case of a very gentle valley
(θ ≪ 45°), the aggravation is expected to be larger, because
the geometry of the mild slope allows the generation of
numerous reflections within the wedge and subsequently
enhances the possibility of constructive wave interferences
on the valley surface. This possibility is directly related to the
density of wave reflections, which decreases with the dis-
tance between consecutive arrivals of reflected waves on

Figure 11. Investigation of the effect of shape factor s: geo-
metric characteristics of the three valley typologies examined.
The base case valley 1 has the same geometry as the Ohba Valley
(Tazoh et al, 1988; Gelagoti et al, 2010), valley 2 corresponds to a
steeper basin, and valley 3 corresponds to a milder basin. (For the
sake of clarity the vertical scale is exaggerated.)

Figure 12. Schematic illustration of the mechanism of wave interference: (a) inside a mild valley of θ ≪ 45°, where multiple wave
reflections inside the valley wedge are possible, leading to possible interferences inside the wedge; (b) inside a steep valley of θ ≥ 45°, where
all waves are refracted away from the wedge leading to a lack of focusing effects within the wedge. (c) The effect of shape factor s on the
spatial distribution of AG and AV=ap along the valley surface for λS ≈ 1 (i.e., relatively short wavelength and high frequency) seismic
excitation, assuming a viscoelastic soil response.
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the valley surface. For a given valley inclination, this distance
increases away from the edges of the valley, and therefore the
probability of wave interference is reduced. As a result, ag-
gravation is expected to take place close to the valley edges.

In stark contrast, in the case of a steep valley (θ ≥ 45°),
the prevailing mechanism of wave interference is modified.
As shown in Figure 12b, due to the sharp slope inclination,
all incoming waves are refracted away from the wedge to-
ward the central part of the valley. Because it is now geome-
trically impossible for any interference to take place within
the valley wedges, aggravation close to the valley edges
should not be expected. Additionally, due to the steep valley
slope, incoming waves will be deflected to reach the surface
significantly inclined; hence, the amplitude of the horizontal
component of motion on the valley surface will be a fraction
of the total motion amplitude because part of it will be con-
verted to vertical motion. (For θ � 45° [valley 2], the hori-
zontal input motion A will reach the surface inclined at 45°
leading to a horizontal component on the soil surface
AH � A cos�45°�≈ 0:7A, equal to the vertical component
AV .) Consequently, deamplification should be expected with-
in the wedges.

These physical arguments are confirmed by the distribu-
tion of AG along the surface of the three valleys (Fig. 12c). In
the case of the mild valley 3, the maximum aggravation
(1.36) is observed very close to the valley edges. In stark

contrast, in the case of the steeper valley 2 (θ � 45°), very
limited aggravation is observed within a narrow zone imme-
diately after the wedge (0:9 < x=l1 ≤ 1), due to waves being
refracted toward the valley center. A quite pronounced
shadow zone is observed with the valley wedges, with AG
falling even below 0.4. As previously discussed, from a
strictly geometric point of view, AG should not exceed 0.7
(the horizontal motion AH at the valley surface is roughly
70% of the input seismic excitation A).

This behavior (i.e., the development of the shadow zone)
fades away as the slope of the wedge boundary becomes
gentler. Indeed, in the case of the milder valley 3, limited
deamplification is observed only within a very narrow zone
inside the wedge. The behavior of valley 1, whose inclination
may be characterized as intermediate, falls between the two
extremes of valleys 2 and 3.

For the vertical acceleration component AV=ap, two
main conclusions can be drawn. Unsurprisingly, the peak
value of the vertical component AV;max, which is a direct out-
come of valley geometry, increases with valley inclination.
Especially for the case of the steep valley 3, a noticeable ver-
tical component is observed along a rather extended area
within its main body: a clear deviation from a purely 1D
response.

All the aforementioned phenomena are substantially less
pronounced when the valleys are excited by longer (λS ≈ 3)

Figure 13. The effect of shape factor s on the spatial distribution of AG (top) and AV=ap (bottom) along the valley surface for λS ≈ 3
(i.e., relatively long wavelength) excitation: (a) viscoelastic soil; (b) inelastic soil (ap=g � 1).
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wavelengths (Fig. 13). Assuming elastic soil response
(Fig. 13a), the distribution of AG along the valley surface
demonstrates a rather common pattern for all cases: 2D am-
plification is nowmostly attributable to surface waves instead
of wave focusing effects, rendering the response less sensitive
to the valley inclination. The most noteworthy deamplifica-
tion is observed within the wedge of the steep valley 2, owing
to the reasons explained previously. In stark contrast, an
almost negligible deamplification is observed in the mild
valley 3. Similarly, since in this case the vertical component
is also a result of surface waves instead of wave focusing
effects, as was the case for λS ≈ 1, its distribution and max-
imum value is quite insensitive to the valley geometry.

Nonlinear Response. When inelastic soil behavior is taken
into account (r � 0:098, v � 415), the amplification
mechanisms are modified and aggravation is generally
depressed (Fig. 13b). The aggravation peaks of the three
valleys are now well separated, and their location has moved
toward the edges of the valleys compared with the elastic
case. This is attributable to the fact that the multiple reflec-

tions that, in the elastic case, were more severe for the milder
valley 3 (due to the geometry-induced longer travelling dis-
tance) tend to vanish due to soil nonlinearity. Rayleigh waves
attenuate as they travel toward the valley center, where now
purely 1D response (AG≈ 1) is established. 2D phenomena
are only contained close to the edges. In terms of the vertical
(parasitic) component, the differences among the three valley
geometries are quite pronounced. This behavior has its jus-
tification in the origin of the vertical acceleration component,
which unlike the elastic case is now mainly a product of
wave focusing effects near the valley edges rather than sur-
face waves, which now quickly dissipate due to soil inelas-
ticity. The amplitude of AV=ap tends to be proportional to the
valley inclination, reaching one in the steeper valley 2.

The Effect of Wavelength Ratio λS

Figure 14 portrays the effect of λS on the distribution of
AG along the valley surface, considering viscoelastic and

Figure 14. The effect of the dimensionless wavelength ratio λS
on the spatial distribution of the aggravation factor AG: (a) viscoe-
lastic soil; (b) inelastic soil (ap=g � 1, r � 0:1). Figure 15. The effect of dimensionless wavelength ratio λS on

the spatial distribution of the dimensionless maximum parasitically
generated vertical acceleration AV=ap: (a) viscoelastic soil; (b) in-
elastic soil (ap=g � 1, r � 0:1).
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inelastic soil response. For this purpose, a valley of i � 5,
s � 10:83, tan θ � 0:3, r � 0:1, and v � 415 is subjected
to three different Ricker excitations of λS � 1, 2, and 3.

With elastic soil (Fig. 14a), when the wavelength ratio is
high (λS � 3), the generation of Rayleigh waves is respon-
sible for the significant aggravation (AG reaching 1.2 to 1.4)
that is observed along a substantial portion of the valley. As
the wavelength reduces (λS � 2) the geometric anomaly is
perceived in more detail, leading to a rather volatile aggrava-
tion pattern: steep AG peaks followed by shadow areas be-
come detectable along the whole surface of the formation,
while conspicuously different aggravation may be distin-
guished even in adjacent areas along the valley surface.
Lastly, as the wavelength reduces further (λS � 1), all 2D
amplification phenomena are localized near the very edges
of the valley in the immediate vicinity of the triangular
wedges. Note that the produced aggravation does not exceed
a mere 1.1, while the shadow areas become deeper
(AGmin ≈ 0:75) and wider, extending to even more than half
the length of the wedge. The response becomes practically
1D (i.e., AG≈ 1) toward the central part of the valley.

On the other hand, when soil nonlinearity is taken into
account (Fig. 14b), the aggravation along most of the valley
surface is negligible regardless of λS: AG reaches a maxi-
mum on the order of 1.25 in the vicinity of the valley edges
for all wavelengths examined. The only notable effect of λS

is on the width of the shadow zone, which is much more
pronounced (AGmin ≈ 0:65) for the high frequency seismic
excitation (λS � 1).

The effect of λS on the dimensionless vertical component
AV=ap is depicted in Figure 15. Under elastic conditions
(Fig. 15a), reducing λS produces more complex waveforms,
thus bringing about a quite abrupt distribution of peak vertical
accelerations AV=ap along the valley surface. More impor-
tantly, lower λS values are responsible for the reduction of
AV=ap in the central part of the valley. This concentration
of significant vertical acceleration (AV ≈ 1:67ap) is the out-
come of multiple wave reflections at the inclined boundaries.
Larger wavelength excitations (λS � 2 and 3) on the other
hand, creating mainly Rayleigh waves at the edges, lead to
fairly uniform vertical acceleration along the valley center.
However, when soil nonlinearity is considered (Fig. 15b),
the distribution of AV=ap becomes practically insensitive
to λS: the maximumAV=ap is always observed close to valley
edges, almost disappearing from the valley center and, for
the short wavelength λS � 1, is reduced to half of its peak
elastic value.

The Effect of Impedance Ratio i

The effect of the impedance ratio i � ρRVR=ρSVS in the
distribution of AG and AV=ap along the valley surface is de-
picted in Figure 16 referring to a valley of s � 10:83,

Figure 16. The effect of impedance ratio i on the spatial distribution of AG (top) and AV=ap (bottom) along the valley surface: (a) assum-
ing viscoelastic soil response; (b) accounting for nonlinear soil behavior (ap=g � 1, r � 0:1).
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tanθ � 0:3, r � 0:1, and v � 415 subjected to λS � 3 seis-
mic excitation. Three different impedance ratios are ana-
lyzed: a rather high i≈ 12, a moderate i≈ 5, and a quite
low i≈ 2:5.

When soil nonlinearity is not taken into account
(Fig. 16a), the effect of the impedance contrast is quite pre-
dictable: the aggravation AG increases with i. Observe that
although the spatial distribution of AG exhibits an obvious
similarity among all three cases examined, the actual ampli-
tude of the produced aggravation is indeed quite dependent
on the impedance contrast, while for i � 2:5 the aggravation
is barely noticeable (AG does not exceed a mere 1.05).
Moving to higher impedance ratios, AG increases to 1.4
(for i � 5) and ultimately to 1.6 for i � 12.

Similar trends are observed in terms of AV=ap. Quite
interestingly, however, even for low impedance ratios where
aggravation of the horizontal component is negligible, the
geometry-induced parasitic vertical component obtains re-
markably high values, reaching 70% or more of the horizon-
tal input acceleration. While the peak value of AV=ap is
practically insensitive to the impedance ratio i, its distribu-
tion along the valley surface is substantially affected, while
for i � 2:5 the peak AV=ap observed close to the valley

edges reduces substantially toward the valley center. For
i � 12, a noticeably broader area suffers from large vertical
acceleration AV=ap. In this latter case, the abrupt fluctuations
of AV=ap and the multiple peaks at roughly 0.7 may be seen
as the signature of the high impedance contrast.

Quite notably, when soil nonlinearity is accounted for
(Fig. 16b), all aforementioned phenomena tend to become
much less pronounced. Soil plastification dominates the
response, drastically overshadowing any effect of the impe-
dance contrast. As a result, the response proves to be remark-
ably similar in all cases examined both in terms of amplitude
and distribution of AG, which hardly differs from one
and AV=ap.

The Effect of Resistance Ratio r

As stated previously, the resistance ratio r can be con-
sidered to be an index of the mobilization of the soil shear
strength by the earthquake. The way it has been defined (see
equation 12), low values of the resistance ratio r are asso-
ciated with strongly inelastic behavior. In order to illustra-
tively demonstrate the influence of the resistance ratio on
2D valley response, a valley of i � 5, s � 10:83, tan θ �
0:3, and v � 415 is subjected to λS � 3 seismic excitation
(i.e., relatively long wavelength) varying only the resistance
ratio r from 0.2 (nonlinear response) to 0.1 (strongly non-
linear response).

Figure 17 displays the comparison in terms of distribu-
tion of AG and AV=ap along the valley surface (the dotted
line refers to viscoelastic soil response, or equivalently
r → ∞). Corroborating the mechanisms highlighted in the
preceding sections, it is observed that as the induced nonli-
nearity increases, 2D effects become more and more concen-
trated close to the valley edges, and the aggravation AG tends
to diminish toward the valley center (Fig. 17a). The differ-
ences are proportional to the magnitude of the developing
shear strains: under strongly nonlinear response (r � 0:1),
the stresses applied by the earthquake result in larger shear
straining of the soil and therefore a lower effective shear
modulus G (see e.g., Vucetic and Dobry, 1991, G-γcurves).
This decrease in the effective G compared to its small strain
value Go is responsible for the generation of lower wave-
lengths because the wavelength is proportional to G, which
in turn may be trapped within the valley wedges producing
the observed amplification due to their multiple reflections.
On the other hand, when the nonlinearity is not that intense
(r � 0:2), the shear straining of the soil is lower leading to a
larger effective G (i.e., closer to Go). Hence, the produced
wavelengths are not as low, and the very convex edge of
the valley is not that perceptible. As a result, wave reflections
are only possible within a more distant zone where, as
explained previously, the density of incoming waves is lim-
ited and therefore the produced aggravation is comparatively
inferior. In addition to such stiffness effects, the increased
effective damping in the system leads to a rigid dissipation

Figure 17. The effect of resistance ratio r on the spatial distri-
bution of (a) aggravation factor AG and (b) dimensionless maxi-
mum vertical acceleration AV=ap along the valley surface.
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of Rayleigh waves, and hence at the center of the valleys only
vertical SV waves may be perceived.

In terms of dimensionless vertical acceleration AV=ap
(Fig. 17b), the discrepancies are obvious when moving away
from the wedge and toward the center of the valley, where the
reduction of the vertical component is moderately enhanced
with the decrease of r (i.e., for a strongly nonlinear
response).

The prevailing role of the mobilization of soil nonlinear-
ity (expressed through the resistance ratio r) becomes evident
when recalling the previous discussion of Figures 6 and 7.
The example case corresponding to Figure 6 refers to a valley
with i � 5:75, λS � 0:97, and r � 0:13, while that of Fig-
ure 7 has i � 2:88, λS � 5:95, and r � 0:39. Thus, their
comparison serves as a perfect example of the cross-effect
of these three dimensional ratios. Observe that a strongly in-
elastic response such as this of Figure 6 is responsible for the

creation of a notable shadow zone further enhanced by its
considerably low λS value. On the other hand, when the in-
duced inelasticity is comparatively lower (Fig. 7) and the λS
ratio is admittedly high, not only is the shadow zone negli-
gible, but amplification is evident along a significant portion
of the valley wedge.

Conclusions

This paper has utilized a specific example to underscore
the sensitivity of the response of alluvial valleys to soil in-
elasticity, thus introducing the necessity of a formal dimen-
sional analysis. The latter was conducted accounting for a
fully inelastic soil response facilitating the production of di-
mensionless results. To this end, this paper has parametri-
cally examined the response of trapezoidal valleys of
various geometric and material characteristics (all inspired

Table 3
Summary of Results on the Effect of Each Dimensionless Factor for

the Cases Examined

Dimensionless Factors AGmax AGmin AV=ap

Effect of shape factor s (λS � 1, i � 5, tan θ � 0:3, v � 415)
Elastic Soil Response
s � 8:50 1.20 0.35 1.30
s � 10:83 1.07 0.80 1.45
s � 14:61 1.35 0.90 1.75

Effect of shape factor s (λS � 3, i � 5, tan θ � 0:3, v � 415)
Elastic Soil Response
s � 8:50 1.40 0.70 0.75
s � 10:83 1.40 0.80 0.70
s � 14:61 1.30 0.95 0.70

Inelastic Soil Response
s � 8:5 1.35 ∼1:0 1
s � 10:83 1.2 ∼1:0 0.5
s � 14:61 1.2 0.85 0.3

Effect of wavelength ratio λS (i � 5, s � 10:83, tan θ � 0:3, v � 415)
λS � 1 1.10 0.80 1.50
λS � 2 1.30 0.80 0.70
λS � 3 1.35 0.75 0.70
λS � 1 1.25 0.65 0.85
λS � 2 1.25 0.90 0.60
λS � 3 1.25 0.95 0.40

Effect of impedance ratio i (s � 10:83, tan θ � 0:3, v � 415, λS � 3)
Elastic Soil Response
i � 2:5 1.0 1.0 0.8
i � 5:0 1.3 ∼1:0 0.7
i � 12:0 1.6 0.65 0.8

Inelastic Soil Response
i � 2:5 1.25 ∼1:0 0.5
i � 5 1.25 ∼1:0 0.6
i � 12 1.25 0.9 0.6

Effect of resistance ratio r (i � 5, s � 10:83, tan θ � 0:3, v � 415, λS � 3)
→ ∞ (elastic) 1.40 0.8 0.7
r � 0:2 1.15 ∼1:0 0.6
r � 0:1 1.25 0.9 0.6

Nonlinear Dimensional Analysis of Trapezoidal Valleys Subjected to Vertically Propagating SV Waves 1015



by well-documented existing formations) to vertically propa-
gating plane SV waves, highlighting the determinative role of
a number of dimensionless factors. Collective results are
presented in tabular format in Table 3. The key conclusions
can be summarized as follows:

(1) As the valley slope becomes gentler, the aggravation AG
is more clearly manifested because the generation of nu-
merous reflections within the wedge is more probable,
and subsequently the possibility of wave interferences
on the surface is enhanced. Conversely, a steep valley
boundary may even generate deamplification of the
horizontal ground motion. The effect of inclination is
drastically limited when nonlinear soil behavior is in-
troduced.

(2) The parasitically generated vertical component AV=ap is
in general geometry dependent, and thus its amplitude
increases as the valley inclination becomes steeper. In
the latter case, a significant amount of vertical accelera-
tion is detectable along an extended area on the valley
surface.

(3) The ratio of generated wavelengths relative to the valley
dimensions λS controls the spatial distribution pattern of
ground motion aggravation. Consequently, for higher λS
values and considering elastic soil response, most of the
2D aggravation AG is generated by high amplitude
Rayleigh waves; as the λS ratio decreases, focusing
diffraction of rays within the wedges prevail and peak
values of AG shift toward the valley edges.

(4) When nonlinear soil behavior is considered, the 2D
response follows a common pattern quite independently
of the wavelength ratio λS: peak values of both AG and
AV=ap are constrained near the edges of the valley and
indeed in locations where the elastic analysis would
even predict a deamplification of the ground motion.

(5) The impedance contrast i has been shown to strongly
affect the amplitude of the produced aggravation (but
not its spatial distribution pattern) when assuming
elastic soil response. Soil inelasticity reduces its effects.

(6) Although accounting for soil nonlinearity has been
shown to radically overshadow the effect of most of the
examined parameters, the ratio of mobilized soil resis-
tance (expressed through the dimensionless resistance
ratio) was not proven to be fundamental.

Data and Resources

All the excitation records utilized in this study are
cited mathematical pulses. No additional data have been
used. The Ohba Valley soil profile data and geometry have
been obtained from the published source listed in the
references.
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